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In the last decade the Sznajd model has been successfully employed in modeling some properties and scale
features of both proportional and majority elections. We propose a version of the Sznajd model with a
generalized bounded confidence rule—a rule that limits the convincing capability of agents and that is essential
to allow coexistence of opinions in the stationary state. With an appropriate choice of parameters it can be
reduced to previous models. We solved this model both in a mean-field approach �for an arbitrary number of
opinions� and numerically in a Barabási-Albert network �for three and four opinions�, studying the transient
and the possible stationary states. We built the phase portrait for the special cases of three and four opinions,
defining the attractors and their basins of attraction. Through this analysis, we were able to understand and
explain discrepancies between mean-field and simulation results obtained in previous works for the usual
Sznajd model with bounded confidence and three opinions. Both the dynamical system approach and our
generalized bounded confidence rule are quite general and we think it can be useful to the understanding of
other similar models.
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I. INTRODUCTION

The Sznajd model �SM�, proposed in 2000 by Sznajd-
Weron and Sznajd, is a model that has been successfully
employed in the reproduction of some properties observed in
the dynamics of opinion propagation in a closed community
�1�. It is a very simple Ising-like model that always leads to
a stationary state of consensus but with a rich transient be-
havior. Its originality resides in the way the state of the sites
evolves: two agreeing sites work together in changing their
neighbors’ state instead of being influenced by the environ-
ment like in the voter model �2,3�.

This model has been extensively studied since then either
with its original set of rules or in a variety of versions in
which one or more rules were changed in order to describe or
include specific features; it was first extended to higher di-
mensional lattices in 2000 by Stauffer �4,5� and adapted to
deal with more than two opinions in networks of different
topologies in 2002 �6�. Also, in 2002, Stauffer �7� adapted
the bounded confidence restriction, first introduced by De-
fuant �8� and Krause �9� in models with continuous opinions,
to the discrete Sznajd model scenario. His numerical simu-
lation results for the regular square lattice with three opin-
ions were in disagreement with what was found in 2004 by
Schulze �10� that solved the same model in a mean-field
approach. Among the important results of the Sznajd model
for more than two opinions is its capability of correctly de-
scribing the power-law behavior observed in proportional
elections of many countries �6,11–14�.

More recently, other models describing opinion dynamics
were introduced, �3,15� and besides a great deal of numerical
work, there were efforts towards the development of more
unifying frames �see for instance �16,17�� and the use of
equilibrium and nonequilibrium statistical mechanical tools
�see for instance �18� for a good review on recent results on

continuous models with bounded confidence�. Also, some
dynamical systems techniques, such as the study of attractors
and its basins, as well as bifurcation diagrams, have been
helpful in understanding global possible behaviors for some
of those models �see, for example, �19,20��. A comprehen-
sive review was recently published by Castellano et al. �21�.

It is in the context of looking for more unifying pictures
and some theoretical results that we present this paper. In it
we propose a model, with a distinct way of introducing the
idea of limited persuasion among electors in a discrete model
as the SM. With adequate choices of parameters our model
restores the set of rules of previous works, allowing compari-
sons.

We solved the model’s master equation numerically in a
mean-field approach and made simulations of the model in a
Barabási-Albert �BA� network �22� and in a square lattice,
looking at the transient behavior, as well as the stationary
state. Comparing the time series of the total number of elec-
tors in mean-field, square lattice and BA network, we see
that the transient behavior of the model in a BA network
shares many features with mean field, which does not happen
with the square lattice transient. Because it can be argued
that the mean-field approach is not adequate to approximate
a square lattice �as can be seen by the time series�, we stud-
ied numerically the model also on a BA network �a better
approximation to mean field�. However, we found the same
behavior that Stauffer had already found �in a square lattice�,
showing that the network was not the origin of the discrep-
ancies. However, with the aid of dynamical systems tech-
niques, we were able to draw a general picture of the model
behavior in phase space, identifying its fixed points and ba-
sins of attraction, for three and four opinions. This approach
sheds some light on the reasons why the mean field behaves
differently than the simulations, helping us to understand the
origin of the discrepancies in the results obtained by Stauffer
�7� and Schulze �10� for three opinions.

This paper is organized as follows: in the next section we
briefly review the rules and the behavior of the original SM,
the set of rules introduced by Bernardes and coauthors in
2002, the version of the model with bounded confidence in-
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troduced by Stauffer in 2002, and finally present our own
model. In Sec. III we solve the model in the mean-field ap-
proach in the general case of M opinions; in Sec. IV we
present simulation results, the detailed phase-portrait in the
special cases of three and four opinions and discuss previous
results. Finally, in Sec. V, we summarize our conclusions.

II. SZNAJD MODEL

In the original SM �1�, the sites of a chain with periodic
boundary conditions represented voters that could only have
opinions �states� �= �1. If a pair of adjacent sites had the
same opinion, they would convince their neighbors with
probability p=1; however, if they disagreed their divergence
would be propagated, with the neighbors adopting an oppo-
site opinion. This model always evolves to one of two ab-
sorbing states: a ferromagnetic state �consensus state�, with
all voters with the same opinion or an anti-ferromagnetic
state, in which every site has an opinion that is different from
the opinion of its neighbors �only possible if the chain has an
even number of sites or the periodic boundary is dropped�.
The transient, however, displays a rich behavior that called
the attention of some physicists �5�.

This model has been extensively studied, either with its
original set of rules or in a variety of versions in which one
or more rules were changed in order to describe or include
specific features as the possibility of more than two opinions,
diffusion of agents, restrictions in the convincing capability
of agents, or different topologies in the network defining the
relationship among voters �for a review, see for instance
�17,21,23��. In most of the works that followed �1�, the di-
vergence propagation rule was abandoned.

A. Sznajd model in complex networks

In �6�, Bernardes et al. studied a version of the SM that
was adapted in order to describe the evolution of N�2 opin-
ions in voters located in an arbitrary network. This model
was employed to simulate proportional elections with M can-
didates in a Barabási-Albert network. In their version, each
site could be in one of M +1 states, the extra state standing
for undecided voters. Some changes were also introduced in
the updating rules, the idea being that at each time step the
same average number of neighboring sites were convinced as
in the SM. This can be accomplished by setting the probabil-
ity that a site convinces another one to p=1 /q, where q is the
degree �number of neighbors� of the convincing site �in the
SM, p=1 always�. Also, a different set of rules was devised
for the undecided voters that were not able to propagate their
lack of opinion but could be convinced by one of its decided
neighbors even if it did not belong to a pair.

More precisely, the model is defined by the following set
of rules: Let ��i , t� be the opinion of a site i at time t
���i , t�� �0,1 , . . . ,M�, where the positive values represent
candidates and ��i , t�=0 stands for undecided voters�. Ini-
tially, all N voters are undecided except for a set of M initial
electors �one for each candidate� chosen at random.

The dynamics consists in visiting each voter in a random
�nonsequential� order, applying the following rules:

�I� A voter i is chosen at random. If it is not undecided
���i , t��0�, a site j is picked up �at random� from the set �i
of neighbors of i and rule II is applied, else nothing happens.

�IIa� If voter j is undecided ���j , t�=0�, then j adopts i’s
opinion with probability pi=1 /qi, where qi is the degree of
site i.

�IIb� If both i and j have the same opinion, voter i tries to
convince each one of its neighbors with probability pi
=1 /qi;

�IIc� If i and j have different opinions, nothing happens.
Like the original SM, this model always evolves towards

a consensus absorbing state, but during the transient this
model displays a power-law distribution of candidates with v
votes. This behavior is in agreement with what has been
observed in the statistics of real proportional elections
�11,12,24�.

B. Bounded confidence

In all versions of the SM �25� in which a site i always
convinces another one independently of its opinion, the sys-
tem evolves to an absorbing state, in which only one opinion
survives. That is not always the case in real communities. In
an attempt to allow the emergence of different factions, De-
fuant et al. �8�, and Hegselmann and Krause �9� introduced
the idea of bounded confidence for models with continuous
opinions ��� �0,1��. The idea is to assume that electors i
and j, with opinions �i and � j, can interact only if ��i−� j�
��, that is, if their opinions are close enough. This model
also evolves to absorbing states but now eventually with the
coexistence of two or more opinions that do not interact with
each other. This rule can be easily adapted to discrete mod-
els, as the SM, if opinions are labeled from 1 to M and � is
set to 1.

In 2002 Stauffer studied the SM with bounded confidence
in square lattices �7�, while Schulze �10� studied its mean
field version, arriving at different conclusions: in the lattice,
Stauffer showed that the model “almost always” evolved to
an absorbing state of consensus, while in the mean-field ap-
proach presented by Schulze the consensus was achieved
only in 50% of the cases; the system ended up in a state of
coexistence of opinions in the other cases.

C. Generalized bounded confidence rule

In this work we propose a model with a generalization of
the bounded confidence idea. This model includes, in a
single set of rules, the original SM, the complex SM, the SM
with bounded confidence proposed by Stauffer, as well as
many other possibilities.

In our generalized model, a site with opinion �� has a
probability p��→� of being convinced by another site with
opinion �. As in previous models, random nonsequential up-
date is employed, and there are no undecided voters. The
rules become:

�I�� Choose a voter i at random and a voter j��i. If �i
�� j we do nothing, else we apply rule II�.

�II�� Site j tries to convince each one of its neighbors k of
opinion � j =�i with probability �p�k→�j

� /qj, where qj is the
coordination of site j.
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Alternatively, rule �II�� can also be:
�II�� A neighbor k of j is chosen at random and j con-

vinces k with probability p�k→�j
.

Note that no assumptions about the probabilities p�→��
are made beforehand. If p�→�� is always 0 or 1, then, with a
convenient choice of values, one can recover both the usual
SM and the discrete version with bounded confidence intro-
duced by Stauffer.

III. TIME EVOLUTION IN A MEAN-FIELD APPROACH

We can easily write the master equation for the model
presented in the last section:

�P��k = �� =
1

N
�
��

�
j��k

�
i��j

1

qiqj
�p��→�P��i = � j = �,�k

= ��� − p�→��P��i = � j = ��,�k = ��� , �1�

where �X and qX are, respectively, the set of neighbors and
the coordination �degree� of site X and N is the total number
of sites.

If

	� =
1

N
�

i

P��i = �� ,

in a mean-field approach, the master equation is reduced to

�	� =
1

N
�
��

�	�
2	��p��→� − 	��

2 	�p�→��� ,

and in the thermodynamic limit �N→
� we have

	̇� = �
��

�	�
2	��p��→� − 	��

2 	�p�→��� ∀ � , �2�

where a time-unit corresponds to a Monte Carlo step �N ran-
dom trials�.

We also define 	� = �	1 ,	2 , . . . ,	M�, F��	� �= 	̇�, and F�
= �F1 ,F2 , . . . ,FM�.

As the sum over �� in Eq. �2� is antisymmetric with re-
spect to � and ��, we get

�
�

	̇� = 0 ⇒ �
�

	� = const. �3�

From the definition of 	 it follows that this constant must be
equal to 1. As a consequence, although the flux has M vari-
ables, it is restricted to M −1 dimensions. This also implies
that zero is an eigenvalue of the Jacobian of F� for all values
of 	� . Also, if 	��0 ∀ �, the negative term of 	̇� in Eq. �2�
is proportional to 	� �and the term multiplying it does not
diverge in the limit 	�→0�. So the flux is restricted to the
region in which all variables are positive �as it should, since
	� is the probability that a site chosen at random has opinion
� in the mean field�.

The region in phase space where 	��0 and ��	�=1 is a
regular simplex, and each vertex Pi represents the consensus
absorbing state of opinion i. The points inside a simplex are
unique convex combinations of its vertices, suggesting a nice
way of representing the phase space of the problem. The
point P that represents the state �	1 ,	2 ,	3 , . . . ,	M� is given
by

P = �
�

	�P�.

The fixed points of Eq. �2� are given by

�
��

	���	�p��→� − 	��p�→��� = 0 or 	� = 0,

and the Jacobian matrix of F� , �JF���,�� is

�JF���,�� =
�F�

�	��
= ��,���

��

	���	�p��→� − 	��p�→���

+ 	�	��,���
��

	��p��→� + 	�p��→� − 2	��p�→��
 .

So, in the fixed point, we have

�JF�
���,�� = �	���,���

��

	��p��→� + 	�
2 p��→� − 2	�	��p�→�� if 	� � 0

− ��,���
��

	��
2 p�→�� if 	� = 0.�

From the expression above it is possible to derive the follow-
ing conclusions:

�a� Consider first that a fixed point P� lies in the intersec-
tion of manifolds of the type 	�=0 so we have �conveniently
reordering the variables�

J� = 
JR
� M

0 D � , �4�

where JR
� is the Jacobian restricted to the nonzero variables

in the fixed point and D is the Jacobian restricted to the

variables equal to zero in the fixed point, which is a diagonal
matrix. So for each opinion � such that 	�

� =0 we have an
associated eigenvalue 
��0,


� = − �
��

�	��
� �2p�→��.

It follows from Eq. �4� that if x is an eigenvector of JR
� with

eigenvalue 
, then
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JR
� M

0 D � . 
x

0
� = 
JR

� . x

0
� = 

x

0
� .

So these eigenvectors and eigenvalues are the same as if we
had a model with fewer opinions. The eigenvectors are also
parallel to all the manifolds 	�=0 where P� is. On the other
hand, if v�k is an eigenvector with eigenvalue 
k it follows
that J�v�k=
kv�k. So for coordinate � we have v�

k �
k−
��
=0.

Hence, if v�k is not parallel to the manifold defined by
	�=0, then we must have 
k=
��0.

�b� We focus now on the possible values that 
� may take.
If

	��
� p�→�� � 0, �5�

for some ��, then 
��0 and the flux, in the neighborhood of
P�, is attracted to the manifold 	�=0. Note that the condition
expressed in Eq. �5� is equivalent to saying that there are still
sites able to convince a site with opinion �.

On the other hand, if condition �5� is not satisfied, 
�=0,
and we have, for a point arbitrarily close to the fixed point
�but outside 	�=0�,

	̇� � �
��

	�
2	��

� p��→�,

which is the time evolution in second order. Therefore, if
there is a �� such that 	��

� p��→��0, then the manifold 	�

=0 is unstable in the neighborhood of the fixed point. If this
condition is also not satisfied, then � inevitably interacts
only with opinions that do not survive in P�, which is the
third-order term.

Let � be the set of opinions � such that 	�=0 in P�, and
let M be the manifold 	�=0 ∀ ��� so P��M. It follows
that if any opinion in � interacts in second order then the
trajectories are repelled from M in the neighborhood of P�. If
all of them interact in first order, then the trajectories are
attracted to M. If they all interact only in third order the
model is degenerate, as opinions in � do not interact with
opinions outside of it �because of the particular choice of
p�→���. If all opinions in � either interact in first or in third
orders the model degenerates asymptotically.

�c� Suppose now that all probabilities p�→�� are nonzero,
meaning that all sites have some chance of convincing any
other one. Consider a surface formed by moving the bound-
ary of the simplex inwardly by a sufficiently small amount
�but nonzero�. With the same reasoning presented above, we
conclude that the flux must come from the simplex’s inner
region, crossing the surface towards the boundary points.

It follows then that there is an unstable region where all
opinions coexist. For M =3 �three opinions� this region is a
node.

�d� Finally, consider a manifold in which all opinions do
not interact with each other, that is,

	�,	�� � 0 ⇒ p��→� = p�→�� = 0.

Every point in this manifold is a fixed point, and so, this
manifold may have a basin of attraction. These arguments
give a qualitative idea of the evolution of the model in the

mean-field approach. The less relevant opinions disappear
quickly, and the system has a high probability of ending up
in a state where different and noninteracting opinions coexist
�provided these states exist�.

IV. SPECIAL CASES OF THREE AND FOUR OPINIONS

In the following subsections we will analyze in detail the
phase portraits that represent the dynamics of our model in
the cases of three and four opinions, in which they can be
drawn. We will also present some results about the time evo-
lution of the average number of votes for each candidate �the
transient behavior� and make comparisons between the mean
field �integrated master equation� and the simulated model
�in BA networks and square lattices�.

A. Scenario with three opinions

It follows from Eq. �3� that 	1+	2+	3=1 so that the flux
is restricted to an equilateral triangle. A point in this triangle
represents uniquely a set of normalized variables 	1, 	2, 	3;
the vertices P1, P2, and P3 represent consensus states with
opinions 1, 2, and 3, respectively; and the side Ai,j, connect-
ing Pi to Pj, represents the set of states in which opinions i
and j coexist.

One can show that if p�→���0 ∀ ���� �the usual SM
lies in this class� the flux has an unstable node, where all
three opinions coexist; three saddle points, in which two
opinions coexist; and three stable nodes, representing con-
sensus states �see the Appendix�. Therefore, as far as the
convincing power among all different opinions is nonzero,
the flux is qualitatively the same and the model will always
evolve to an absorbing state of consensus. However, the ba-
sins of attraction change, and the same initial condition may
belong to different basins if the convincing capabilities
change �see Fig. 1�.

But what happens when two opinions � and �� do not
interact? This problem, for p�→��= p��→�=0 if ��−����1,

(b)(a)

FIG. 1. �a� Phase portrait for the usual Sznajd model �everybody
convinces everyone with equal probabilities� in a mean-field ap-
proach: there are three stable fixed points �vertices� that correspond
to absorbing states of consensus with opinions 1, 2, and 3; three
saddle points, in which two opinions coexist, and an unstable node
with the coexistence of all three opinions. �b� The scenario de-
scribed in �a� does not change qualitatively as long as the convinc-
ing capability between any two opinions is different from zero. In
this picture p1→2= p2→3= p3→1=0.5 and p2→1= p3→2= p1→3=1. The
insets resume the interacting rules; the size of the head of an arrow
indicates the strength of the convincing power in that direction.
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has already been studied in detail, both numerically �7�
�square lattice� and in a mean-field approximation �10�, with
different conclusions. Stauffer showed that, in a square lat-
tice, the stationary state is almost always an absorbing state
of consensus in opinion 2. However, Schulze simulated the
same model in a complete graph—what corresponds to a
mean-field approach—and only in 50% of the simulations
the model evolved to the consensus state with opinion 2,
found by Stauffer; in the other cases, he observed a steady
state with coexistence of opinions 1 and 3. Our analytical
approach and generalized model allow us to understand why.

In order to understand why the model behaves differently
in the mean field and in the square lattice, we first note that
the BA network behaves in the same way as the square lat-
tice, almost always reaching consensus for opinion 2. One
would expect the BA network to behave approximately like
the mean field as they both have small world properties,
unlike the square lattice. So whatever process causes the lat-
tice to always reach consensus must also be present in the
BA network.

To compare the results for the mean field and the BA
network we integrated numerically the equations for the
mean field to get a phase space portrait of the dynamics.
Then we built an “equivalent” portrait for the stochastic
model in a BA network in the following way: we evolved the
model from an initial condition chosen at random but with
specific expected values of 	1, 	2, and 	3, averaging over
many simulations. Finally, we plotted the resulting trajecto-
ries, together with the mean-field results �see Fig. 2�.

The picture shows that in both cases there are basins of
attraction for two kinds of solutions: consensus in opinion 2
or coexistence of opinions 1 and 3. If the initial opinions are
drawn at random, with equal probability among opinions 1,
2, and 3 �as done in �7,10��, the initial condition will ap-
proximately lay in a circle of radius proportional to 1

�N
,

where N is the number of sites centered in the point 	1

=	2=	3= 1
3 .

In the mean-field scenario, this special point is located on
the border of the two basins of attraction. As a consequence,
no matter how large is N and, consequently, how small is the
neighborhood around the point in which the initial conditions
lay, half of its area will be in one basin of attraction and half
in the other one.

On the other hand, for the stochastic model this point is,
although close to the border, inside the consensus basin of
attraction. So the coexistence state can only be achieved for
small values of N �small lattices�, for which the fluctuations
in the initial condition are bigger.

For different choices of p�→�� the qualitative behavior
�fixed points and basins of attraction� in phase space is only
influenced by which of these probabilities are 0 and which
are nonzero. When a limit p�→��→0 is taken, typically there
will be some fixed points that collapse to already existing
fixed points where fewer opinions coexist. In the example �b�
of Fig. 2 the saddle point between P1 and P3 �coexistence of
2 opinions� collapses to the node in P1 �only 1 opinion� that
becomes a saddle.

For all the possibilities where p�→�� is either 0 or 1, the
mean-field approach is able to capture the whole qualitative

behavior of the lattice model �see Fig. 2�b� for instance� even
though the trajectories representing the time evolution of the
model in a lattice cross each other, what is possible since it is
not a flux. This is an asymmetric case, for which opinion 1
�2� convinces 2 �1�, opinion 2 �3� convinces 3 �2�, but only
opinion 3 is able to change opinion 1 �p3→1=0�.

If we study the time evolution of the average number of
votes of each candidate, in the three situations studied
�square lattice, Barabási-Albert network, and mean field�, we
see that the mean filed is a much better approximation for the
BA case �see Fig. 3�.

B. Scenario with four opinions

In the case of four opinions, 	1+	2+	3+	4=1, and the
flux is restricted to a tetrahedron. With usual bounded confi-
dence rules, p�→��= p��→�=0 if ��−����1 and p�→��=1
otherwise. If we add an interaction between opinions 1 and 4
�p1→4= p4→1=1�, each one of the tetrahedron’s faces repro-

(b)

(a)

FIG. 2. Comparison between mean-field trajectories �in gray�
and time evolution of the model in a BA network �in black� for the
case of three opinions and different combinations of p�→��. In �a�
we have �=1 �usual bounded confidence�. The only difference is a
slight change in the position of the line that separates the two basins
of attraction �see detail of central region in �a��. In �b�, p1→2

= p1→3= p2→1= p2→3= p3→2=1 but p3→1=0, i.e., sites with opinion
1 are unable of convincing sites with opinion 3. Note that, in both
cases, there is no qualitative change, �actually little quantitative
changes� between the phase portraits of the two networks.
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duces the three opinion scenario described in the previous
section. By continuity arguments, we can guess that in this
case, there are two distinct basins of attraction, shown in Fig.
4. The internal surface isolates completely region I that in-
cludes the edge 2⇔4 from region II that includes edge
1⇔3. As all points of both these edges are fixed points,
there are two possible absorbing states with coexistence of
opinions �opinions 2 and 4 or opinions 1 and 3�, regions I
and II are therefore the basins of attraction of these states.
The fixed point with coexistence of four opinions �that lies in
the surface between I and II� is unstable, the ones with three
opinions are saddles �the edges 1⇔4, 2⇔3, 1⇔2, and
4⇔3 are unstable manifolds� and although the consensus
states are in the stable edges �1⇔3 and 2⇔4� they are
unattainable.

V. CONCLUSIONS

In summary, we propose a version of the Sznajd model,
generalizing the bounded confidence rule. We solve the
model in a mean-field approach for a quite general case dis-
cussing some aspects of the dynamics. We showed that the
qualitative behavior of trajectories in the mean-field ap-
proach can be reduced to the study of the cases p�→��=0 and
p�→��=1 for each one of the possible pairs of opinions � and
��. Also, as long as every opinion interacts with all the oth-
ers, the only possible absorbing state is consensus.

For the special cases of three and four opinions that had
already been studied in the literature, we were able to find a
nice way of representing the whole phase space and drew the
detailed phase portrait, both in a mean-field approach and for
a Barabási-Albert network simulation �in which case we de-
veloped a method to draw the stochastic trajectories�. In both
cases the results are qualitatively the same �in fact, they are
remarkably alike�, with two distinct basins of attractions: one
for an absorbing state of consensus in opinion 2 and another
for an absorbing state with coexistence of opinions 1 and 3.
The only difference was in the position of the line that sepa-
rates the two basins of attraction. This picture enabled us to
understand why in �10� �mean-field�, the model ended up in
an absorbing state of consensus only in 50% of the cases,
while in the numerical simulations on a square lattice �7� it

almost always ended up in this state.
Also, regarding the whole time evolution for the average

number of electors, with opinion �, we were able to derive
the following conclusions: �a� for three opinions, a mean-
field approach is able to reproduce all the main properties of
the model when a complex network �usually a network with
small world properties� is employed to describe the relation-
ship among the electors; however, the same does not happen
when the model is simulated on a square lattice. �b� The
existence of any restriction in the convincing power of
agents, with at least two opinions that do not interact one
with the other may lead both in a mean-field approach and in
the BA network simulation to two classes of absorbing
states: consensus in one of the opinions that interacts with all
the others or coexistence of two �or more� opinions that do
not interact. The only difference between the two networks is
in the position of the basins of attraction, which means that
the initial configuration is very important to define the
asymptotic behavior, and in order to understand such models,
the whole phase space must be taken into account. In par-
ticular, the “natural” initial condition with a uniform distri-

FIG. 4. Boundary between the two basins of attraction for the
four opinion model with �=1; different basins are in different gray
tones.

×

×

×

×

× × ×

×

×

×

×

× × ×
(a) (b) (c)

FIG. 3. Comparison between the time series of the Sznajd model in different networks and in the absence of bounded confidence. Each
color �grayscale� represents a different opinion. The horizontal axis is time and the vertical one is the number �proportion for the mean field�
of voters. Graph �a� is for a square lattice �approximately 105 sites�, �b� is for a BA network �106 sites and m=5�, and �c� is for the mean
field. We can see the resemblance of the mean field and the BA network time series.
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bution of opinions among the voters may lay in different
basins of attraction if different networks �or mean field� are
employed.

The generalized model introduced by us put the original
Sznajd model and a variety of bounded confidence versions
together in a single model, and the dynamical system’s ap-
proach employed in its analysis allowed to actually under-
stand the whole model and to what extent the asymmetries in
the way each opinion convinces the others can change quali-
tatively the behavior of the system. We believe that such
approach that is quite general can easily be adapted to unveil
new features or draw unifying pictures of other similar mod-
els.
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APPENDIX

In the fixed point we have

	1 + 	2 + 	3 = 1, �A1a�

	1
2	2p2→1 − 	1	2

2p1→2 + 	1
2	3p3→1 − 	1	3

2p1→3 = 0,

�A1b�

	2
2	1p1→2 − 	1

2	2p2→1 + 	2
2	3p3→2 − 	2	3

2p2→3 = 0.

�A1c�

From this set of equations its is trivial to show that if only
one of the 	��0, we have a stable fixed point in one of the
vertices; if 	��0 for all values of �, we can define �1=

	1

	3

and �2=
	2

	3
; Eqs. �A1� can then be written as

�1�2p2→1 − �2
2p1→2 + �1p3→1 − p1→3 = 0, �A2a�

�1�2p1→2 − �1
2p2→1 + �2p3→2 − p2→3 = 0, �A2b�

from Eq. �A2b� we get

�2 =
�1

2p2→1 + p2→3

�1p1→2 + p3→2
,

and Eq. �A2a� becomes

�1p2→1��1
2p2→1 + p2→3���1p1→2 + p3→2� − p1→2��1

2p2→1

+ p2→3�2 + ��1p3→1 − p1→3���1p1→2 + p3→2�2 = 0

�A3�

that is an ordinary polynomial of third order in �1:

f��1� = �p2→1
2 p3→2 + p3→1p1→2

2 ��1
3 − p1→2�p2→1p2→3

− 2p3→1p3→2 + p1→2p1→3��1
2 + p3→2�p2→1p2→3

− 2p1→2p1→3 + p3→1p3→2��1 − �p1→2p2→3
2

+ p1→3p3→2
2 � = A�1

3 + B�1
2 + C�1 + D = 0. �A4�

The real positive roots of this polynomial correspond to fixed

points in which all three opinions coexist; if p�→���0, A
�0, and D�0, there are 1 or 3 positive roots.

Suppose, by absurd, that there were three real positive
roots: we would then have B�0, C�0, and the discriminant
�=4AC3+4B3D−B2C2+27A2D2−18ABCD�0;

defining

� =
C

3�AD2�1/3 and � =
B

3�A2D�1/3 ,

we note that, if A, C�0, and B, D�0, we have �, ��0.
Besides, C3=27�3AD2, B3=27�3A2D, and BC=9AD��

so that

� = 108�3A2D2 + 108�3A2D2 − 81�2�2A2D2 + 27A2D2

− 162��A2D2

and

� =
�

27A2D2 = 4�3 + 4�3 + 1 – 3�2�2 − 6�� � 0

that is

���,�� = E����3 + F����2 + G���� + H��� ,

where E=4, F=−3�2, G=−6�, and H=4�3+1. So, if we fix
��0, ���� has a negative root �as the coefficients are real
and −H

E is the product of the roots�. But E�0, and unless �
has a positive root, we would have ��0 for ��0; however,
this is only possible if � has three real roots, what is equiva-
lent to

4EG3 + 4F3H − F2G2 + 27E2H2 − 18EFGH � 0

or

− 3456�3 − 108�6�4�3 + 1� − 324�6 + 432�16�6 + 8�3 + 1�

− 1296�3�4�3 + 1� = − 432��3 − 1�3 � 0 ⇒ � � 1.

But because ��� ,��=��� ,��, we have ��1⇒��
�1⇒BC�9AD. However, we also have

BC − 9AD = 8p2→1
2 p1→2p3→2p2→3

2 + 9p2→1
2 p3→2

3 p1→3

+ 9p3→1p1→2
3 p2→3

2 + 4p3→1p1→2
2 p3→2

2 p1→3

+ p2→1p1→2
2 p3→2p1→3p2→3

+ p2→1p3→1p1→2p3→2
2 p2→3 + 2p3→1

2 p1→2p3→2
3

+ 2p1→2
3 p3→2p1→3

2 � 0,

what is a contradiction. So, there is one and only one positive
root, and only one �unstable� fixed point inside the triangle.
The corresponding values of 	 can be obtained from Eq.
�A1a�:

	1 =
�1

�1 + �2 + 1
, 	2 =

�2

�1 + �2 + 1
, and 	3

=
1

�1 + �2 + 1
.

Finally, it is also easy to see that if only one of the 	 are
equal to zero in Eqs. �A1�, we have three other �stable� fixed
points:
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	1 = 0, 	2�3� =
p2�3�→3�2�

p2�3�→3�2� + p3�2�→2�3�
,

	2 = 0, 	3�1� =
p3�1�→1�3�

p3�1�→1�3� + p1�3�→3�1�
, and

	3 = 0, 	1�2� =
p1�2�→2�1�

p1�2�→2�1� + p2�1�→1�2�
.

By continuity reasons, these must be saddle points within the
unstable manifolds along the sides.
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